{splitTools} is a fast, lightweight toolkit for data splitting.
Its two main functions partition()
and
create_folds()
support
The function create_timefolds()
does time-series
splitting in the sense that the out-of-sample data follows the in-sample
data.
We will now illustrate how to use {splitTools} in a typical modeling workflow.
We will go through the following steps:
iris
data into 60% training, 20%
validation, and 20% test data, stratified by the variable
Sepal.Length
. Since this variable is numeric,
stratification uses quantile binning.Sepal.Length
with a linear
regression, once with and once without interaction between
Species
and Sepal.Width
.library(splitTools)
# Split data into partitions
set.seed(3451)
inds <- partition(iris$Sepal.Length, p = c(train = 0.6, valid = 0.2, test = 0.2))
str(inds)
#> List of 3
#> $ train: int [1:81] 2 3 6 7 8 10 11 18 19 20 ...
#> $ valid: int [1:34] 1 12 14 15 27 34 36 38 42 48 ...
#> $ test : int [1:35] 4 5 9 13 16 17 25 39 41 45 ...
train <- iris[inds$train, ]
valid <- iris[inds$valid, ]
test <- iris[inds$test, ]
rmse <- function(y, pred) {
sqrt(mean((y - pred)^2))
}
# Use simple validation to decide on interaction yes/no...
fit1 <- lm(Sepal.Length ~ ., data = train)
fit2 <- lm(Sepal.Length ~ . + Species:Sepal.Width, data = train)
rmse(valid$Sepal.Length, predict(fit1, valid))
#> [1] 0.3020855
rmse(valid$Sepal.Length, predict(fit2, valid))
#> [1] 0.2954321
# Yes! Choose and test final model
rmse(test$Sepal.Length, predict(fit2, test))
#> [1] 0.3482849
Since the iris
data consists of only 150 rows, investing
20% of observations for validation seems like a waste of resources.
Furthermore, the performance estimates might not be very robust. Let’s
replace simple validation by five-fold CV, again using stratification on
the response variable.
iris
into 80% training data and 20% test,
stratified by the variable Sepal.Length
.# Split into training and test
inds <- partition(iris$Sepal.Length, p = c(train = 0.8, test = 0.2), seed = 87)
train <- iris[inds$train, ]
test <- iris[inds$test, ]
# Get stratified CV in-sample indices
folds <- create_folds(train$Sepal.Length, k = 5, seed = 2734)
# Vectors with results per model and fold
cv_rmse1 <- cv_rmse2 <- numeric(5)
for (i in seq_along(folds)) {
insample <- train[folds[[i]], ]
out <- train[-folds[[i]], ]
fit1 <- lm(Sepal.Length ~ ., data = insample)
fit2 <- lm(Sepal.Length ~ . + Species:Sepal.Width, data = insample)
cv_rmse1[i] <- rmse(out$Sepal.Length, predict(fit1, out))
cv_rmse2[i] <- rmse(out$Sepal.Length, predict(fit2, out))
}
# CV-RMSE of model 1 -> close winner
mean(cv_rmse1)
#> [1] 0.330189
# CV-RMSE of model 2
mean(cv_rmse2)
#> [1] 0.3306455
# Fit model 1 on full training data and evaluate on test data
final_fit <- lm(Sepal.Length ~ ., data = train)
rmse(test$Sepal.Length, predict(final_fit, test))
#> [1] 0.2892289
If feasible, repeated CV is recommended in order to reduce uncertainty in decisions. Otherwise, the process remains the same.
# Train/test split as before
# 15 folds instead of 5
folds <- create_folds(train$Sepal.Length, k = 5, seed = 2734, m_rep = 3)
cv_rmse1 <- cv_rmse2 <- numeric(15)
# Rest as before...
for (i in seq_along(folds)) {
insample <- train[folds[[i]], ]
out <- train[-folds[[i]], ]
fit1 <- lm(Sepal.Length ~ ., data = insample)
fit2 <- lm(Sepal.Length ~ . + Species:Sepal.Width, data = insample)
cv_rmse1[i] <- rmse(out$Sepal.Length, predict(fit1, out))
cv_rmse2[i] <- rmse(out$Sepal.Length, predict(fit2, out))
}
mean(cv_rmse1)
#> [1] 0.3296087
mean(cv_rmse2)
#> [1] 0.331373
# Refit and test as before
The function multi_strata()
creates a stratification
factor from multiple columns that can then be passed to
create_folds(, type = "stratified")
or
partition(, type = "stratified")
. The resulting partitions
will be (quite) balanced regarding these columns.
Two grouping strategies are offered:
Let’s have a look at a simple example where we want to model “Sepal.Width” as a function of the other variables in the iris data set. We want to do a stratified train/valid/test split, aiming at being balanced regarding not only the response “Sepal.Width”, but also regarding the important predictor “Species”. In this case, we could use the following workflow:
set.seed(3451)
ir <- iris[c("Sepal.Length", "Species")]
y <- multi_strata(ir, k = 5)
inds <- partition(
y, p = c(train = 0.6, valid = 0.2, test = 0.2), split_into_list = FALSE
)
# Check
by(ir, inds, summary)
#> inds: train
#> Sepal.Length Species
#> Min. :4.300 setosa :30
#> 1st Qu.:5.100 versicolor:30
#> Median :5.800 virginica :30
#> Mean :5.836
#> 3rd Qu.:6.400
#> Max. :7.700
#> ------------------------------------------------------------
#> inds: valid
#> Sepal.Length Species
#> Min. :4.400 setosa :10
#> 1st Qu.:5.425 versicolor:10
#> Median :5.900 virginica :10
#> Mean :5.903
#> 3rd Qu.:6.300
#> Max. :7.900
#> ------------------------------------------------------------
#> inds: test
#> Sepal.Length Species
#> Min. :4.700 setosa :10
#> 1st Qu.:5.100 versicolor:10
#> Median :5.700 virginica :10
#> Mean :5.807
#> 3rd Qu.:6.475
#> Max. :7.100