Package: missRanger 2.6.1

missRanger: Fast Imputation of Missing Values

Alternative implementation of the beautiful 'MissForest' algorithm used to impute mixed-type data sets by chaining random forests, introduced by Stekhoven, D.J. and Buehlmann, P. (2012) <doi:10.1093/bioinformatics/btr597>. Under the hood, it uses the lightning fast random forest package 'ranger'. Between the iterative model fitting, we offer the option of using predictive mean matching. This firstly avoids imputation with values not already present in the original data (like a value 0.3334 in 0-1 coded variable). Secondly, predictive mean matching tries to raise the variance in the resulting conditional distributions to a realistic level. This would allow, e.g., to do multiple imputation when repeating the call to missRanger(). Out-of-sample application is supported as well.

Authors:Michael Mayer [aut, cre]

missRanger_2.6.1.tar.gz
missRanger_2.6.1.zip(r-4.5)missRanger_2.6.1.zip(r-4.4)missRanger_2.6.1.zip(r-4.3)
missRanger_2.6.1.tgz(r-4.5-any)missRanger_2.6.1.tgz(r-4.4-any)missRanger_2.6.1.tgz(r-4.3-any)
missRanger_2.6.1.tar.gz(r-4.5-noble)missRanger_2.6.1.tar.gz(r-4.4-noble)
missRanger_2.6.1.tgz(r-4.4-emscripten)missRanger_2.6.1.tgz(r-4.3-emscripten)
missRanger.pdf |missRanger.html
missRanger/json (API)
NEWS

# Install 'missRanger' in R:
install.packages('missRanger', repos = c('https://mayer79.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/mayer79/missranger/issues

Pkgdown site:https://mayer79.github.io

On CRAN:

Conda:

imputationmachine-learningmissing-valuesrandom-forest

11.07 score 69 stars 6 packages 208 scripts 2.5k downloads 5 mentions 4 exports 6 dependencies

Last updated 3 months agofrom:5171ba7a55. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 07 2025
R-4.5-winOKMar 07 2025
R-4.5-macOKMar 07 2025
R-4.5-linuxOKMar 07 2025
R-4.4-winOKMar 07 2025
R-4.4-macOKMar 07 2025
R-4.4-linuxOKMar 07 2025
R-4.3-winOKMar 07 2025
R-4.3-macOKMar 07 2025

Exports:generateNAimputeUnivariatemissRangerpmm

Dependencies:FNNlatticeMatrixrangerRcppRcppEigen

Censored Variables

Rendered fromworking_with_censoring.Rmdusingknitr::rmarkdownon Mar 07 2025.

Last update: 2024-08-15
Started: 2022-01-29

Multiple Imputation

Rendered frommultiple_imputation.Rmdusingknitr::rmarkdownon Mar 07 2025.

Last update: 2024-08-15
Started: 2021-03-20

Using missRanger

Rendered frommissRanger.Rmdusingknitr::rmarkdownon Mar 07 2025.

Last update: 2024-07-27
Started: 2019-12-29