No black-box model without XAI. This is where packages like
{flashlight} offers the following XAI methods:
light_performance()
: Performance metrics like RMSE
and/or R2light_importance()
: Permutation variable importance
(Fisher, Rudin, and
Dominici 2018)light_ice()
: Individual conditional expectation (ICE)
profiles (Goldstein et
al. 2015) (centered or uncentered)light_profile()
: Partial dependence (Friedman 2001),
accumulated local effects (ALE) (Apley and Zhu 2016), average
predicted/observed/residuallight_profile2d()
: Two-dimensional version of
light_profile()
light_effects()
: Combines partial dependence, ALE,
response and prediction profileslight_interaction()
: Different variants of Friedman’s H
statistics (Friedman
and Popescu 2008)light_breakdown()
: Variable contribution breakdown
(approximate SHAP) for single observations (Gosiewska and Biecek 2019)light_global_surrogate()
: Global surrogate trees (Molnar 2019)Good to know:
flashlight
(see examples and Section “flashlights”).multiflashlight()
.plot()
visualizes the results via
{ggplot2}.Let’s start with an iris example. For simplicity, we do not split the data into training and testing/validation sets.
library(ggplot2)
library(MetricsWeighted)
library(flashlight)
fit_lm <- lm(Sepal.Length ~ ., data = iris)
# Make explainer object
fl_lm <- flashlight(
model = fit_lm,
data = iris,
y = "Sepal.Length",
label = "lm",
metrics = list(RMSE = rmse, `R-squared` = r_squared)
)
Error bars represent standard errors, i.e., the uncertainty of the estimated importance.
Petal.Width
fl_lm |>
light_ice("Sepal.Width", n_max = 200) |>
plot(alpha = 0.3, color = "chartreuse4") +
labs(title = "ICE curves for 'Sepal.Width'", y = "Prediction")
fl_lm |>
light_ice("Sepal.Width", n_max = 200, center = "middle") |>
plot(alpha = 0.3, color = "chartreuse4") +
labs(title = "c-ICE curves for 'Sepal.Width'", y = "Prediction (centered)")
### PDPs
### Multiple models
Multiple flashlights can be combined to a multiflashlight.
library(rpart)
fit_tree <- rpart(
Sepal.Length ~ .,
data = iris,
control = list(cp = 0, xval = 0, maxdepth = 5)
)
# Make explainer object
fl_tree <- flashlight(
model = fit_tree,
data = iris,
y = "Sepal.Length",
label = "tree",
metrics = list(RMSE = rmse, `R-squared` = r_squared)
)
# Combine with other explainer
fls <- multiflashlight(list(fl_tree, fl_lm))
fls |>
light_performance() |>
plot(fill = "chartreuse4") +
labs(x = "Model", title = "Performance")
The “flashlight” explainer expects the following information:
model
: Fitted model. Currently, this argument must be
named.data
: Reference data used to calculate things, often
part of the validation data.y
: Column name in data
corresponding to
the numeric response.predict_function
: function of the same signature as
stats::predict()
. It takes a model
and a
data.frame data
, and provides numeric predictions, see
below for more details.linkinv
: Optional function applied to the output of
predict_function()
. Should actually be called
“trafo”.w
: Optional column name in data
corresponding to case weights.by
: Optional column name in data
used to
group the results. Must be discrete.metrics
: List of metrics, by default
list(rmse = MetricsWeighted::rmse)
. For binary
(probabilistic) classification, good candidate metrics would be
MetricsWeighted::logLoss
.label
: Mandatory name of the model.predict_function
s (a selection)The default stats::predict()
works for models of
class
lm()
,glm()
(for predictions on link scale), andrpart()
.It also works for meta-learner models like
Manual prediction functions are, e.g., required for
function(m, X) predict(m, X)$predictions
for regression, and
function(m, X) predict(m, X)$predictions[, 2]
for
probabilistic binary classificationglm()
: Use
function(m, X) predict(m, X, type = "response")
to get GLM
predictions at the response scaleA bit more complicated are models whose native predict function do not work on data.frames:
Example (XGBoost):
This works when non-numeric features are all factors (not categoricals):